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ABSTRACT: et r1 D ..., ,D
 the different irreducible constituents of the permutation representation 

G of  

G. In addition let if  be the degree of 
r) ..., 1,(iDi 

 and 
)(D Tr let ii 

be the character of iD
. Let the 

numbering be chosen so that 1D
is the identity representation. Then number the irreducible constituents 

iD
 of 

G  such that 
pf2   and the representations r3 D ..., ,D

 are conjugate. In particular 

f,f...f r3   and f divides p-1. 
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INTRODUCTION 

 
 In 1943. R. Brauer studied about permutation groups and finid the  permutation groups of prime degree and 
related classes of Groups (See (4)), From years 1906 to 1936. W.A.Manning studied about primitive groups  and 
finding the primitive groups of classes six, ten , twelve and fifteen . And in 1906, W.Burnside introduced d researched 
the a bout transitive groups, of prime degree (See (2)), and in 1921, he worked  about the certain simply- transitive 
permutation group and obtained a beautiful consequences (See (3)). (See(11),(12),(13),(14),(15),(16),(17) and (18)). 
In 1937 J.S. Frame determined the degrees of the irreducible components  of simply transitive permutation groups, 
and in 1941, he obtained the double cosets of a finite groups (See(5) and (6)). And also in 1952, he finding the 
irreducible representation extracted from two permutation groups (See (7)). G.A.Miller(1897&1915),(See (19) &(20)), 
E.T.Parker (1954),(See (21)), M. Suzuki(1962), (See(23)), J.G.Thompson (1959), (See (24)), M.J.Weiss(1928), (See 
(25)&(26)), H.Wielandt (1935 & 1956) (See (27)&(28)) and H.Zassenhaus(1935), (See (30)) are studied about 
transitive and primitive groups and their obtaind the beautiful and more consequence. Now in this paper we will prove 

number the irreducible constituents iD  of 
G  such that pf2   and the representations r3 D ..., ,D  are conjugate. In 

particular f,f...f r3   and f divides p-1. 
 
2. Periliminares  
 In this chapter we study the notations, elementary properties ,lemmas and theorems, whose we will used in  
chapter3. 
 
2.1. Elementary notions and definitions 

 Let   be a  finite set of arbitrary elements which for natural numbers 1,2,…,n as the points and  subset of 

. Then a permutation on   is a one-to-one mapping of   onto itself. We denote the image of the point   under 

the permutation p by 
p .We write 

.p  
n ... 2  1

n   ...   2    1
P ppp 























. We define the product pq of two permutations p and q 

on   by the formula 
qppq )( 

. trivialy pq is again a permutation on  .  
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 With respect to the operation above, all the permutations on   form a group, the symmetric group SG. Let G be 

a permutation group on  , in short 
 SG . We say that a set   is a fixed block of G or is fixed by G if 

G

. Then each 
Gg

 induces a permutation on   which we denote by 
g

. We call the totality of 
g

's formed for all 

Gg
 the constituent 

G  of G on  ( for example 
GG ). 

G is a permutation group on  .Obviously the 

mapping 
 gg

 is  a homomorphism :
 GG

~
. If this mapping is an isomorphism, that is, 

|G||G| 
, then 

the constituents 
G is called faithful.  Every group G on   has the trivial fixed blocks 


 on  . If it has no others it 

is called transitive. Otherwise it is called intransitive. Accordingly, a constituent 
G  is transitive precisely when   

is a minimal fixed block (


). In this case   is called an orbit or set of transitivity of G. Every permutation g  on 

  can beregarded in the following way as a liner substitution in | |=n variables . the variables n1 X,...,X  are taken 

as points. We form colum vectors 

*
x

g
n

g
1

g

n

1

g  

x

x

  x   ,

x

x

x 





































 

 where n1,..., , ,gg *















 is the n by n matrix 

corresponding to the linear transformation .xx g  ( 













         ,

        ,1


 is the well known Kronecker symbol). We 

call g* the permutation matrix corresponding to g. such a matrix contains exactly one 1 in each row and column and 

zeros every where else. In addition, every permutation matrix g* is orthogonal , i.e., the transpose *g 
of g* is identical 

with its inverse: 
-1*g*g 

, we obtain a faithful representationof SG by 
*gg 

. Now let 
GSG . By G* we denote 

the group of all matrices g* with 
Gg

. Obviously G* is isomorphic to G. We call G* the permutation representation 
of  G.  
 
2.2.Theorem  
 (See (22)). If a transitive permutation group G is regarded as a matrix group G*, then the matrices which commute 
with all the matrices  of G* form a ring V=V(G). We call V "the centralizer ring corresponding to G". V is a vector 

space over the complex number field which has the matrices 
)B( 
corresponding to the orbits  of G1 as a linear 

basis. In particular, the dimension of V coincides with the number k of orbits of G1.  
 
Proof    
See(29) , Theorem 28.4)  
 Let D1,…,Dr be the different irreducible representations appearing in G* where D1 is the identity representation. 
In the following we always denote by fi the degree of Di (i=1,…,r), and by ei the multiplicity of Di in G*. In particular, 

we have e1=f1=1 and 

nfe

i
ii 

, the reduction of G* gives for an appropriately chosen  unitary n by n  matrix U :  

 ].D,...,D,...,D,...,D,[DU*GU

re

nn

2e

221
-1




 
 
 
2.3.Proposition  

 Let M be the n by n matrix whose elements are all 1.then 



  M.)B(

(Here the summation is over all orbits of 
Gi) 
 
Proof  
 See ((29), proposition 28.2) .  
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2.4.Theorem 
 V is commutative if and only if all the ei=1. 
 
Proof  
 See ((29) , Theorem 29.3) 
 
2.5.Theorem (29.8)  

 V is commutative if and only if the class matrices 






iCg
i *gE

 (i = 1,..,n) whose Ci be the ith class of conjugate 

elements of G, generate V, i.e., when each VB  has a (not necessarily unique ) representation 




r

1i
iiEzB

. 
 
Proof  
  See ((29), Theorem 29.8)  
 
2.6.Theorem 

 Let   and  be two orbits of G1. then  








             ,n||

       ,          
)B()Tr(B(



 
 
Proof  
 See ((29), Theprem 28.10)  
 
2.7.Difinition  
 By a Burnside-group (in short : B-group) we mean an abstract finite group H with the property that every primitive 
group containing the regular representation of H as a transitive subgroup is doubly transitive. (See (28), p.343). 
 
2.8.Theorem 
 (See (27)).Every cyclic group of composite order is a B-group. 
 
Proof  
 See ((29), Theorem 25.3) 
 
2.9. Theorem  

 (See (10)): G is doubly transitive. If in addition G  is primitive on  , then G is even doubly primitive (Jordan 
theorem). 
 
Proof  
 See ((29), Theorem 13.1) 
 
2.10. Difinition   

 A permutation group G on   is called semiregular if, for each ; 1G   ,    and G is called regular if it is 
semiregular and transitive, Accordingly, every regular group is also semiregular and subgroups as well as 
constituents of semiregular groups are semiregular 1 is semiregular. In the case of semiregular groups, the degree 
and minimal degree coincide.  
 
2.11. Proposition 
 The order of a semiregular group is a divisor of its degree. A transitive group is regular if and only if its order and 
degree are equal.  
 
Proof  
 See ((29), Proposition 4.2) 
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2.12. Theorem 

 Every normal subgroup  1 of a primitive group is transitive.  
 
Proof   
 See ((29), Theorem8.8) 
  
2.13.Theorem 
 The representation module associated with G* contains a one-dimensional invariant subspace corresponding to 

the identity representation, namely, the one generated by 
















1

1



, and because of the transitivity of G it contains no 
others. The identical representation therefore appears in G* with multiplicity exactly 1.  
 
Proof   
 See ((29)), theorem 29.1) 
 
2.14. Theorem 
 G is doubly transitive if and only if dim V(G)=2. In this case G* has exactly two irreducible constituents. In 
particular, we have r=k and V(G) commutative.  
 
Proof 
 See((29), Theorem 29.9) 
 
2.15. Theorem 
 (See (1), p.341). Every nonsolvable transitive group of prime degree is doubly transitive.  
 
Proof 
 See ((29), Theorem 11.7 and (1), p. 341)  
 
2.16. Proposition  

 Every abelian group G transitive on   is regular. G is its own centralizer in 
S .  

 
Proof 
 See ((29), Proposition 4.4)  
 
2.17. Proposition  

 If G is primitive on  and  and 


are different points of  , Then either  GG 
 or G is a regular group of 

prime degree.  
 
Proof 
 See ( (29), Proposition 8.6)  
 
2.18. Theorem  

Let G betransitive on  , |G| not a prime number, 
    ,  ,

. Let G have a subgroup H intransitive on   

with the properties 
HG  

and 
. HH  
Then G is imprimitive and 

. HH  
 

 
Proof 
 See ((29), Theorem 27.5).  
 
2.19. Theorem   
 Paired orbits have the same length.  
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Proof 
 See ( (29), Theorem 16.3). 
 
2.20. Difinition  

 Let G is transitive and consider the orbits of G1. With each of these orbits  (including the trivial 
{1}

) we 

associate in the following way a matrix 
   ,
V)B(

, 
n1,...,, 

, with elements: 





 



                                                                           o therwise  0 ,

 . and 1  with andG g exists there if    1 ,
V

gg

,



 

Thus, in the first colum of 
)B( 
 we have exactly those 

1V
,


  for which   holds. If , the ones of 

)B( 

and 
)B( 
 do not occur in the same place. On the other hand , for each place 

),( 
there is an orbit  of G, 

(namely, the one in which the 

-1g  with 
lies) 1g 

such that 
)B( 
has 1 in this position.  

 
2.21. Theorem 

 The matrices corresponding by definition 2.18 to paired orbits of G1 are transposes: .))(B()B(   
 
Proof 
 See ((29), Theorem 28.9) 
 
2.22.Theorem 

  If G has an orbit   with 
2

, then G contains a regular normal subgroup R of index 2. G is a Frobenius 
group. 
 
Proof  
 See ((29), Theorem 18.7) 
 
2.23. Theorem 

(A) If the irreducible constituents of G* are all different, i.e., if all the multiplicities ei=1, then the rational number 






k

1i i

i2-k

f

n
nq

 
 is an integer. 

(B) If  in addition the k numbers ni are all different, then q is a square.  
(C) If the irreducible constituents  of G* all have rational characters, then q is a square. The hypothesis is always 
fulfilled if the degrees fi are all different.  
 
Proof of 2.23.(A) 
 It suffices to show that q is an algebraic integer. The notation of the preceding section is continued.  
Let U again be the unitary transformation matrix introduced in §2. From the hypothesis ei=1 it follows that every 

matrix M=U-1BU with VB has diagonal form. Because 
V(G))B(B ii 

we have in particular 

], w,...,w,w[ BUUM
kfki2f2i1i

-1
i 

which if


is the fi by fi identity matrix.  

Let wi be the diagonal elements of the matrix BU,UM -1  for arbitrary VB . We put  
 

  ,

w

w

     w ,

z

z

z       ,BzB

k

1

k

1

i

ii
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 ],f ,...,f [1,F     ],n ,...,n 1, [N k2k2  and  I=(wij); i,j=1,…,k. From  BUUM -1 it follows that BU,BUMM -1   
since U was assumed unitary. With the aid of 2.4 we now obtain 

Fw.wfwwM)MTr(B)BTr()BBTr(zznnzz Nnzz

i
iii

ji,
jiji

k

1i
iii  

  

Because 
 

j ijji  Iz, wi.e.,   ,wzw
we therefore have  FI.INn  By taking the determinant  

we get  

 

i
i

i
i

k .|I|  |I|f|II|  |F||Nn|nn

  
 The wij, as eigenvalues of the matrix Bj which has integer coefficients, are algebraic integers, and therefore | I | 

and 
 I 

 are also algebraic integers.  

  We wish to show that 
 I 

 is divisible by n. by 2.3, jjB
=M where M is the n by n matrix consisting of n2 ones. 

M has the eigenvalue n occurring with multiplicity 1 belonging to the eigenvector 
















1

1



. Its remaining eigenvalues are 

0. In the diagonal matrix 
n ,M jj  therefore appears exactly once, the remaining elements being 0. Therefore  

n wijj 
 for i=1 and =0  for the remaining. This implies 

 

n). (mod    0

ww0

ww0

wwn

 I 

kkk2

2k22

1k12











 

Hence 
 I   I nq -2

 is an algebraic integer, hence also a rational integer.  
 
Proof of 2.23(C). (a)  

 Because of the hypothesis  
1,e   e k1 

 the commutativity of  V  follows by 2.4. Theorem 2.5 yields the 

existence of k class matrices k1 C,...,C
 and of complex numbers ijx

 such that  

 k). ..., 1, (i           CxB

k

1j

jiji 


 Conversely by 2.2 there are also 
ijx 

 with  

 . BxC

k

1j

jiji 




The 
ijx

 are, by well-known theorems of linear algebra, 
uniquely determined and rational, since the matrices Bi and Cj are rational.  
 (b) By hypothesis all the irreducible characters appearing in G* are rational. Thus the matrics U-1Cju appearing 

in the proof of 2.5 are also rational. By (a) the matrices  



i
j

-1
iji

-1
i UCUx  UBUM

 are then rational. The wij are 

therefore rational. Since the ijw
were already in the proof of 2.23 (A) shown to be algebraic integers, they are rational 

integers. 
ijw] 

 is therefore a rational integer. Since n divides 
]n  ,] -1

 is also a rational integer, and q is 
therefore a square as was asserted.  
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 (c) The hypothesis that all the irreducible characters appearing in 
G are rational is fulfilled if the degrees if  of 

the irreducible constituents of  
G  are all different. For since G* is rational, with each irreducible representation iD  

all representations conjugate to it appear in 
G . Because all of the if  are different, these coincide with iD , and iX

is therefore rational. 
 
3. Main Result 

 In this chapter we prepare the proof number the irreducible constituents iD
 of 

G  such that 
pf2   and the 

representations r3 D ..., ,D
 are conjugate. In particular f,f...f r3   and f divides p-1. 

 
Proof 
 For proof of main result of this paper we prpve the following steps. 

 (Step1) We can assume without loss of generality that 2p  . For if p=2, then G is easily seen to be 
4S  or 

4A ; 
hence G is doubly transitive.  
 (Step2) Every element different from 1 of  a Sylow p-subgroup of  G is a product of two p-cycles. Every Sylow p-
subgroup of G is semiregular and has order p. 
 
Proof 

 Let P be a Sylow p-subgroup of G and P.x1   Since the order of P is a power of p, x consists of p-cycles 
and cycles of length 1. By 2.6 (theorem of Jordan) G has no p-cycles and x is therefore a product of two p-cycles. In 

particular, x moves every point, hence P is semiregular. By 2.11, 
P

 is a divisor of 2p, thus 
pP 

 because 2p   
by (Step1). 

 (Step3) If Gg  and a is the order of g, then either a=p or (a, p) =1. 
 
Proof 

 We assume that p divides a and 
ap 

. Then 
1gh /  

, thus h has order p. By (Step2), h is a product of 
two p-cycles. Therefore in g no cycle can appear whose length is prime to p, since h has only cycles of length p. If  g 
were a 2p-cycle, G would contain the regular group <g>. which is cyclic and of composite order 2p. By 2.8 (theorem 
of Schur) G would be doubly transitive, which is not the case. g therefore has only p-cycles, hence has order p, which 
contradicts our assumption. 

 We again denote by r1 D ..., ,D
 the different irreducible constituents of the permutation representation 

G of  G. 

In addition let if  be the degree of 
r) ..., 1,(iDi 

 and 
)(D Tr let ii 

be the character of iD
. Let the numbering 

be chosen so that 1D
is the identity representation. We now prove: 

 
Theorem 

 We can number the irreducible constituents iD
 of 

G  such that 
pf2   and the representations r3 D ..., ,D

 

are conjugate. In particular f,f...f r3   and f divides p-1. 
 
Proof. 4(a)  

 By (Step2)  there is an Gx which is the product of two p-cycles. Without loss of generality we may put 

x=(12…p) (p+1 … 2p). The characteristic polynomial of the permutation matrix x  associated with x is (zp-1)2. Hence 
x  has the eigenvalues 1, u,…,u p-1, all with multiplicity 2, where u is a primitive pth root of unity. We wish to investigate 
how these eigenvalues are distributed among the Di(x). Dt(x) has the eigenvalue 1 with multiplicity 1 and no others, 
since D1 is the identity representation.  
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 4(b) We now show that  fi>1 holds for 2.i  We assume fi=1. Since G is not Abelian, but Di(G) is Abelian, Di is 

not faithful. The normal subgroup N of all Gn  with Di(n)=1 is therefore different from 1 and henc (by 2.10) is 
transitive. Thus Di(N) =1 and also D1(N)=1, which by 2.11 cannot be the case. (Note: This argument is valid for all 
primitive non-Abelian groups.)  
 4(c) Let the numbering of the irreducible constituents D2,…,Dr be chosen so that D2(x) has 1 as an eigenvalue. 

Because f2>1 and since the eigenvalue 1 occurs for x only twice, D2(x) has an eigenvalue  different  from 1 which 
without loss of generality  may be assumed to be u.  
 4(d) All representations conjugate to a Di are constituents of G* since G* is rational. D2 is conjugate to itself, for 

otherwise a  3i  with(x)Di  would have the eigenvalue 1, which is impossible since x  has the eigenvalue 1 

altogether only twice. Therefore  (x)D2 has the eigenvalues 1,u,…,u p-1, all with multiplicity 1, for if an eigenvalue,say 

u, appeared in  (x)D2 with multiplicity 2, then because of the rationality of 2 so would u2,…,u p-1 . Then, however, 
D1 and D2 would be the only irreducible constituents of G*, and by 2.14 G would be doubly transitive. Hence we 
obtain f2=p.  

 4(e) The remaining eigenvalues u,…u p-1 (all with multiplicity 1) of x  are divided among the remaining 
representations D3,…,Dr. We now prove that these representations are conjugate to each other and therefore have 

the same degree f . For r=3 there is nothing more to show. We assume 4.r   It suffices (without loss of generality) 

to prove that D3 is  conjugate to D4. Let u be an eigenvalue of D3(x), us one of D4(x) 
1).-ps(1 

Because (p, 

|G|/p)=1               (by (Step2)) there is an m which is a solution of the two congruences 
/p).|G1(| m and s(p)m 

 
This yields (m, |G|)=1, and therefore an irreducible constituent Di of G* conjugate to D3 is defined by 

G).g()(g(g) m
3i  

Because of the rationality of D1 and D2, we have 3. i  In addition, um=us is an eigenvalue of 

 (x).Di It is also an eigenvalue of  (x).D4 Since us occurs altogether only once in D3,…,Dr we have Di=D4, hence D4 

conjugate to D3.  

 4( f ) In particular we obtion 
01-p 

(f). In addition, 4(d) and 4(e) show that all the Di occur only with multiplicity 
1: e1=…=er=1. 
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